Ocean thermal energy conversion

Ocean thermal energy conversion (OTEC) uses the temperature difference between cooler deep and warmer shallow or surface ocean waters to run a heat engine and produce useful work, usually in the form of electricity. OTEC is a base load electricity generation system, i.e. 24hrs/day all year long. However, the temperature differential is small and this impacts the economic feasibility of ocean thermal energy for electricity generation.
Systems may be either closed-cycle or open-cycle. Closed-cycle engines use working fluids that are typically thought of as refrigerants such as ammonia or R-134a. These fluids have low boiling points, and are therefore suitable for powering the system’s generator to generate electricity. The most commonly used heat cycle for OTEC to date is the Rankine cycle using a low-pressure turbine. Open-cycle engines use vapour from the seawater itself as the working fluid.
OTEC can also supply quantities of cold water as a by-product. This can be used for air conditioning and refrigeration and the nutrient-rich deep ocean water can feed biological technologies. Another by-product is fresh water distilled from the sea.
OTEC theory was first developed in the 1880s and the first bench size demonstration model was constructed in 1926. Currently the world’s only operating OTEC plant is in Japan, overseen by Saga University.
Attempts to develop and refine OTEC technology started in the 1880s. In 1881, Jacques Arsene d’Arsonval, a French physicist, proposed tapping the thermal energy of the ocean. D’Arsonval’s student, Georges Claude, built the first OTEC plant, in Matanzas, Cuba in 1930.[2][3] The system generated 22 kW of electricity with a low-pressure turbine.[4] The plant was later destroyed in a storm.

In 1935, Claude constructed a plant aboard a 10,000-ton cargo vessel moored off the coast of Brazil. Weather and waves destroyed it before it could generate net power.[4] (Net power is the amount of power generated after subtracting power needed to run the system).
View of a land based OTEC facility at Keahole Point on the Kona coast of Hawaii (United States Department of Energy)
In 1956, French scientists designed a 3 MW plant for Abidjan, Côte d’Ivoire. The plant was never completed, because new finds of large amounts of cheap petroleum made it uneconomical.
In 1962, J. Hilbert Anderson and James H. Anderson, Jr. focused on increasing component efficiency. They patented their new “closed cycle” design in 1967. This design improved upon the original closed-cycle Rankine system, and included this in an outline for a plant that would produce power at lower cost than oil or coal. At the time, however, their research garnered little attention since coal and nuclear were considered the future of energy.
Japan is a major contributor to the development of OTEC technology. Beginning in 1970 the Tokyo Electric Power Company successfully built and deployed a 100 kW closed-cycle OTEC plant on the island of Nauru. The plant became operational on 14 October 1981, producing about 120 kW of electricity; 90 kW was used to power the plant and the remaining electricity was used to power a school and other places. This set a world record for power output from an OTEC system where the power was sent to a real (as opposed to an experimental) power grid. 1981 also saw a major development in OTEC technology when Russian engineer, Dr. Alexander Kalina, used a mixture of ammonia and water to produce electricity. This new ammonia-water mixture greatly improved the efficiency of the power cycle.In 1994 Saga University designed and constructed a 4.5 kW plant for the purpose of testing a newly invented Uehara cycle, also named after its inventor Haruo Uehara. This cycle included absorption and extraction processes that allow this system to outperform the Kalina cycle by 1-2%.[10] Currently, the Institute of Ocean Energy, Saga University, is the leader in OTEC power plant research and also focuses on many of the technology’s secondary benefits.
The 1970s saw an uptick in OTEC research and development during the post 1973 Arab-Israeli War, which caused oil prices to triple. The U.S. federal government poured $260 million into OTEC research after President Carter signed a law that committed the US to a production goal of 10,000 MW of electricy from OTEC systems by 1999.
In 1974, The U.S. established the Natural Energy Laboratory of Hawaii Authority (NELHA) at Keahole Point on the Kona coast of Hawaii. Hawaii is the best US OTEC location, due to its warm surface water, access to very deep, very cold water, and high electricity costs. The laboratory has become a leading test facility for OTEC technology. In the same year, Lockheed received a grant from the U.S. National Science Foundation to study OTEC. This eventually led to an effort by Lockheed, the US Navy, Makai Ocean Engineering, Dillingham Construction, and other firms to build the world’s first and only net-power producing OTEC plant, dubbed “Mini-OTEC”For three months in 1979, a small amount of electricity was generated.
In 2002, India tested a 1 MW floating OTEC pilot plant near Tamil Nadu. The plant was ultimately unsuccessful due to a failure of the deep sea cold water pipe. Its government continues to sponsor research.
In 1993, a 250kW was designed by Dr. Luis Vega and constructed by the National Energy Laboratory of Hawaii (then called NELH) and the Pacific International Center for High Technology Research. The plant operated for six years and produced a record amount of 255kW of energy.
In 2006, Makai Ocean Engineering was awarded a contract from the U.S. Office of Naval Research (ONR) to investigate the potential for OTEC to produce nationally-significant quantities of hydrogen in at-sea floating plants located in warm, tropical waters. Realizing the need for larger partners to actually commercialize OTEC, Makai approached Lockheed Martin to renew their previous relationship and determine if the time was ready for OTEC. And so in 2007, Lockheed Martin resumed work in OTEC and became a subcontractor to Makai to support their SBIR, which was followed by other subsequent collaborations
In July 2011, Makai Ocean Engineering completed the design and construction of an OTEC Heat Exchanger Test Facility at the Natural Energy Laboratory of Hawaii. The purpose of the facility is to arrive at an optimal design for OTEC heat exchangers, increasing performance and useful life while reducing cost (heat exchangers being the #1 cost driver for an OTEC plant).[16] And in March 2013, Makai announced an award to install and operate a 100 kilowatt turbine on the OTEC Heat Exchanger Test Facility, and once again connect OTEC power to the grid.
Ocean Thermal Energy Corporation (OTE) currently has plans to install two 10 MW OTEC plants in the US Virgin Islands and a 5-10 MW OTEC facility in The Bahamas. OTE has also designed the world’s largest SDC plant which was planned for a resorted in The Bahamas, which will use cold deep seawater as a method of air-conditioning. Unfortunately, this project was postponed due to schedule delays.
In March 2013, Saga University with various Japanese industries completed the installation of a new OTEC plant. Currently, this is the only operating OTEC plant in the world.
Cycle types
Cold seawater is an integral part of each of the three types of OTEC systems: closed-cycle, open-cycle, and hybrid. To operate, the cold seawater must be brought to the surface. The primary approaches are active pumping and desalination. Desalinating seawater near the sea floor lowers its density, which causes it to rise to the surface.
The alternative to costly pipes to bring condensing cold water to the surface is to pump vaporized low boiling point fluid into the depths to be condensed, thus reducing pumping volumes and reducing technical and environmental problems and lowering costs.
Closed-cycle systems use fluid with a low boiling point, such as ammonia (having a boiling point around -33°C at atmospheric pressure), to power a turbine to generate electricity. Warm surface seawater is pumped through a heat exchanger to vaporize the fluid. The expanding vapor turns the turbo-generator. Cold water, pumped through a second heat exchanger, condenses the vapor into a liquid, which is then recycled through the system.
In 1979, the Natural Energy Laboratory and several private-sector partners developed the “mini OTEC” experiment, which achieved the first successful at-sea production of net electrical power from closed-cycle OTEC. The mini OTEC vessel was moored 1.5 miles (2.4 km) off the Hawaiian coast and produced enough net electricity to illuminate the ship’s light bulbs and run its computers and television.
open-cycle OTEC uses warm surface water directly to make electricity. The warm seawater is first pumped into a low-pressure container, which causes it to boil. In some schemes, the expanding steam drives a low-pressure turbine attached to an electrical generator. The steam, which has left its salt and other contaminants in the low-pressure container, is pure fresh water. It is condensed into a liquid by exposure to cold temperatures from deep-ocean water. This method produces desalinized fresh water, suitable for drinking water, irrigation or aquaculture.
In other schemes, the rising steam is used in a gas lift technique of lifting water to significant heights. Depending on the embodiment, such steam lift pump techniques generate power from a hydroelectric turbine either before or after the pump is used.
In 1984, the Solar Energy Research Institute (now the National Renewable Energy Laboratory) developed a vertical-spout evaporator to convert warm seawater into low-pressure steam for open-cycle plants. Conversion efficiencies were as high as 97% for seawater-to-steam conversion (overall efficiency using a vertical-spout evaporator would still only be a few per cent). In May 1993, an open-cycle OTEC plant at Keahole Point, Hawaii, produced 50,000 watts of electricity during a net power-producing experiment.[27] This broke the record of 40 kW set by a Japanese system in 1982.
A hybrid cycle combines the features of the closed- and open-cycle systems. In a hybrid, warm seawater enters a vacuum chamber and is flash-evaporated, similar to the open-cycle evaporation process. The steam vaporizes the ammonia working fluid of a closed-cycle loop on the other side of an ammonia vaporizer. The vaporized fluid then drives a turbine to produce electricity. The steam condenses within the heat exchanger and provides desalinated water (see heat pipe)
Working fluids
A popular choice of working fluid is ammonia, which has superior transport properties, easy availability, and low cost. Ammonia, however, is toxic and flammable. Fluorinated carbons such as CFCs and HCFCs are not toxic or flammable, but they contribute to ozone layer depletion. Hydrocarbons too are good candidates, but they are highly flammable; in addition, this would create competition for use of them directly as fuels. The power plant size is dependent upon the vapor pressure of the working fluid. With increasing vapor pressure, the size of the turbine and heat exchangers decreases while the wall thickness of the pipe and heat exchangers increase to endure high pressure especially on the evaporator side.