Biogas typically refers to a mixture of gases produced by the breakdown of organic matter in the absence of oxygen. Biogas can be produced from regionally available raw materials such as recycled waste and is a renewable energy source and in many cases exerts a very small carbon footprint.
Biogas is produced by anaerobic digestion with anaerobic bacteria or fermentation of biodegradable materials such as manure, sewage, municipal waste, green waste, plant material, and crops. It is primarily methane and carbon dioxide (CO2) and may have small amounts of hydrogen sulphide moisture and siloxanes.
The gases methane, hydrogen, and carbon monoxide (CO) can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel; it can be used for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat.
Biogas can be compressed, the same way natural gas is compressed to CNG, and used to power motor vehicles. In the UK, for example, biogas is estimated to have the potential to replace around 17% of vehicle fuel.It qualifies for renewable energy subsidies in some parts of the world. Biogas can be cleaned and upgraded to natural gas standards when it becomes bio methane.
Biogas production in rural Germany
Biogas is practically produced as landfill gas (LFG) or digested gas. A biogas plant is the name often given to an anaerobic digester that treats farm wastes or energy crops. It can be produced using anaerobic digesters. These plants can be fed with energy crops such as maize silage or biodegradable wastes including sewage sludge and food waste. During the process, an air-tight tank transforms biomass waste into methane, producing renewable energy that can be used for heating, electricity, and many other operations that use an internal combustion engine, such as GE Jenbacher or Caterpillar gas engines.
There are two key processes: mesophilic and thermophilic digestion. In experimental work at University of Alaska Fairbanks, a 1000-litre digester using psychrophiles harvested from “mud from a frozen lake in Alaska” has produced 200–300 liters of methane per day, about 20%–30% of the output from digesters in warmer climates.
Landfill gas
Landfill gas is produced by wet organic waste decomposing under anaerobic conditions in a landfill.
The waste is covered and mechanically compressed by the weight of the material that is deposited above. This material prevents oxygen exposure thus allowing anaerobic microbes to thrive. This gas builds up and is slowly released into the atmosphere if the site has not been engineered to capture the gas. Landfill gas released in an uncontrolled way can be hazardous since it can becomes explosive when it escapes from the landfill and mixes with oxygen. The lower explosive limit is 5% methane and the upper is 15% methane.
The methane in biogas is 20 times more potent a greenhouse gas than carbon dioxide. Therefore, un-contained landfill gas, which escapes into the atmosphere may significantly contribute to the effects of global warming. In addition, volatile organic compounds (VOCs) in landfill gas contribute to the formation of photochemical smog.
Biochemical Oxygen Demand, or BOD is a measure of the amount of oxygen required by aerobic micro-organisms to decompose the organic matter in a sample of water. Knowing the energy density of the material being used in the biodigester as well as the BOD for the liquid discharge allows for the calculation of the daily energy output from a biodigester.
Other terms related to biodigesters include effluent dirtiness, which relates how much organic material there is per unit of biogas source. Typical units for this measure are in mg BOD/Litre. As an example, effluent dirtiness can range between 800–1200 mg BOD/Litre in Panama.
The composition of biogas varies depending upon the origin of the anaerobic digestion process. Landfill gas typically has methane concentrations around 50%. Advanced waste treatment technologies can produce biogas with 55%–75% methane, which for reactors with free liquids can be increased to 80%-90% methane using in-situ gas purification techniques. As produced, biogas contains water vapor. The fractional volume of water vapor is a function of biogas temperature; correction of measured gas volume for water vapor content and thermal expansion is easily done via simple mathematicswhich yields the standardized volume of dry biogas.
In some cases, biogas contains siloxanes. They are formed from the anaerobic decomposition of materials commonly found in soaps and detergents. During combustion of biogas containing siloxanes, silicon is released and can combine with free oxygen or other elements in the combustion gas. Deposits are formed containing mostly silica or silicates and can contain calcium, sulfur, zinc, phosphorus. Such white mineral deposits accumulate to a surface thickness of several millimeters and must be removed by chemical or mechanical means.
Practical and cost-effective technologies to remove siloxanes and other biogas contaminants are available.
For 1000 kg (wet weight) of input to a typical biodigester, total solids may be 30% of the wet weight while volatile suspended solids may be 90% of the total solids. Protein would be 20% of the volatile solids, carbohydrates would be 70% of the volatile solids, and finally fats would be 10% of the volatile solids.
In North America, use of biogas would generate enough electricity to meet up to 3% of the continent’s electricity expenditure ((citation needed)). In addition, biogas could potentially help reduce global climate change. Normally, manure that is left to decompose releases two main gases that cause global climate change: nitrous oxide and methane. Nitrous oxide (N2O) warms the atmosphere 310 times more than carbon dioxide and methane 21 times more than carbon dioxide.
By converting cow manure into methane biogas via anaerobic digestion, the millions of cattle in the United States would be able to produce 100 billion kilowatt hours of electricity, enough to power millions of homes across the United States. In fact, one cow can produce enough manure in one day to generate 3 kilowatt hours of electricity; only 2.4 kilowatt hours of electricity are needed to power a single 100-watt light bulb for one day. Furthermore, by converting cattle manure into methane biogas instead of letting it decompose, global warming gases could be reduced by 99 million metric tons or 4%.
A biogas bus in Linköping, Sweden
Biogas can be used for electricity production on sewage works,in a CHP gas engine, where the waste heat from the engine is conveniently used for heating the digester; cooking; space heating; water heating; and process heating. If compressed, it can replace compressed natural gas for use in vehicles, where it can fuel an internal combustion engine or fuel cells and is a much more effective displacer of carbon dioxide than the normal use in on-site CHP plants
Biogas upgrading
Raw biogas produced from digestion is roughly 60% methane and 29% CO2 with trace elements of H2s;it is not high quality enough to be used as fuel gas for machinery. The corrosive nature of H2s alone is enough to destroy the internals of a plant.
Methane in biogas can be concentrated via a biogas upgrader to the same standards as fossil natural gas, which itself has had to go through a cleaning process, and becomes biomethane. If the local gas network allows, the producer of the biogas may use their distribution networks. Gas must be very clean to reach pipeline quality and must be of the correct composition for the distribution network to accept. Carbon dioxide, water, hydrogen sulfide, and particulates must be removed if present.
There are four main methods of upgrading: water washing, pressure swing absorption, selexol absorption, and amine gas treating.
The most prevalent method is water washing where high pressure gas flows into a column where the carbon dioxide and other trace elements are scrubbed by cascading water running counter-flow to the gas. This arrangement could deliver 98% methane with manufacturers guaranteeing maximum 2% methane loss in the system. It takes roughly between 3% and 6% of the total energy output in gas to run a biogas upgrading system.
Biogas gas-grid injection
Gas-grid injection is the injection of biogas into the methane grid (natural gas grid). Injections includes biogas until the breakthrough of micro combined heat and power two-thirds of all the energy produced by biogas power plants was lost (the heat), using the grid to transport the gas to customers, the electricity and the heat can be used for on-site generation resulting in a reduction of losses in the transportation of energy. Typical energy losses in natural gas transmission systems range from 1% to 2%. The current energy losses on a large electrical system range from 5% to 8%.
Biogas in transport
“Biogaståget Amanda” (“The Biogas Train Amanda”) train near Linköping station, SwedenIf concentrated and compressed, it can be used in vehicle transportation. Compressed biogas is becoming widely used in Sweden, Switzerland, and Germany. A biogas-powered train, named Biogaståget Amanda (The Biogas Train Amanda), has been in service in Sweden since 2005. Biogas powers automobiles. In 1974, a British documentary film titled Sweet as a Nut detailed the biogas production process from pig manure and showed how it fueled a custom-adapted combustion engine. In 2007, an estimated 12,000 vehicles were being fueled with upgraded biogas worldwide, mostly in Europe.
Measuring in biogas environments
Biogas is part of the wet gas and condensing gas (or air) category that includes mist or fog in the gas stream. The mist or fog is predominately water vapor that condenses on the sides of pipes or stacks throughout the gas flow. Biogas environments include wastewater digesters, landfills, and animal feeding operations (covered livestock lagoons).
Ultrasonic flow meters are one of the few devices capable of measuring in a biogas atmosphere. Most thermal flow meters are unable to provide reliable data because the moisture causes steady high flow readings and continuous flow spiking, although there are single-point insertion thermal mass flow meters capable of accurately monitoring biogas flows with minimal pressure drop. They can handle moisture variations that occur in the flow stream because of daily and seasonal temperature fluctuations, and account for the moisture in the flow stream to produce a dry gas value.

Leave a Reply